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Abstract

The optics of vertebrate photoreceptors have been investigated with specific reference to the effect of form birefringence. The complex
dielectric tensor of the lamellar-like outer segment structure has been derived, allowing the transverse spectral absorbance to be calcu-
lated for different incident polarizations. These results were used to calculate the changes in the cellular dichroic ratio as a function of
both the volume occupied by the bilayers and the real and complex parts of the intrinsic birefringence of the bilayers. Physiologically
realistic values of these parameters show the cellular dichroic ratio to be greater than the bilayer dichroic ratio by a factor of �1.3. Fur-
thermore, the calculations of spectral absorbance indicate that form birefringence may affect measurements of optical density in trans-
versely orientated outer segments.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For many years it has been known that vertebrate pho-
toreceptors display some intriguing fundamental optical
properties that are central to the way they function
(Harosi, 1981; Laughlin, Menzel, & Snyder, 1975). The
absorption of light by both rods and cones is not only
governed by the specific bio-chemical nature of the
opsin–chromophore relationship, but also by the physical
structure of the cell (Harosi, 1981; Israelachvili, Sammut,
& Snyder, 1975). Optical properties such as intrinsic bire-
fringence, dispersion, real and complex form birefringence
all arise because of the structure of the self assembled lipid
bilayer stack in the outer segment. Understanding the
effects of these optical properties has become essential for
both the correct interpretation of many different types of
experimental measurements and understanding some
sensory specializations such as polarization sensitivity.
0042-6989/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2006.03.019

E-mail address: nicholas.roberts@manchester.ac.uk
Microspectrophotometry (MSP) is the major experi-
mental technique for measuring both the spectral absor-
bance of individual cells and their dichroic ratios; the
latter defined as the ratio between the absorbance of light
linearly polarized parallel and perpendicular to the plane
of the bilayers in the outer segments (Harosi, 1981). Con-
siderable success has been achieved in using measured val-
ues of the dichroic ratio to provide information on such
quantities as visual pigment concentrations (Harosi, 1975,
1981) and orientation of the chromophore within the bilay-
er (Harosi & Malerba, 1975; Liebman, 1962; Roberts,
Temple, Haimberger, Gleeson, & Hawryshyn, 2004). Even
so, Haggins and Jennings (1959) were the first to recognize
that dichroic ratio measurements do not provide direct
information on the absorbance in the bilayers due to the
effects of form birefringence. Form birefringence occurs
in a layered system such as the outer segment of a rod or
a cone because of the continuous boundary conditions
imposed by Maxwell’s equations at the bilayer/cytoplasm
interfaces. Several works by Moody (1964), Weale (1971),
Laughlin et al. (1975), Israelachvili et al. (1975), Snyder
and Laughlin (1975) and Harosi (1981) have since
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Fig. 1. (A) A schematic diagram of a rod photoreceptor illustrating the
lamellar structure of the outer segment. aperp and apar represent the cellular
absorbance perpendicular and parallel to the plane of the bilayers. �cell

represents the effective dielectric tensor of the outer segment. In the
expanded view of the bilayers, a? and ak represent the local absorbance of
the bilayer perpendicular and parallel to the plane of that bilayer. �1 and �2

represent the dielectric tensors of the bilayer and cytoplasm, respectively.
(B) Shows a 3D diagram of the structure used to model the outer segment
and derive the effective dielectric tensor. Definitions are as in (A) with t1

and t2 representing the thicknesses of the bilayers and cytoplasm,
respectively.
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attempted to calculate theoretically the effect of form bire-
fringence on the optics of the cell. However, although all of
these works have provided some excellent insight into the
problem, no theory has yet provided a complete descrip-
tion of form birefringence within a framework which
directly relates to experimental measurements. Further-
more, there are still some inconsistencies between the theo-
ries (Harosi, 1978; Snyder, 1978).

A generalized theory of form birefringence was recently
deduced by Bêche and Gaviot (2003), the first to use a ten-
sorial approach to describe both uniaxial layered systems
(such as the traditional example of a stack of glass plates)
and biaxial systems. Roberts and Gleeson (2004) showed
that experimentally measured transverse absorbance spec-
tra from vertebrate photoreceptors could be accurately pre-
dicted through a combination of defining a complex biaxial
dielectric tensor of the outer segment bilayers and account-
ing for the form birefringence in the system.

In this paper, we set out the complete theory for form
birefringence in vertebrate outer segments. In particular,
we show that this method allows the direct determination
of the spectral dichroic ratios and provides a method for
investigating the changes in absorbance that occur as a func-
tion of the layered structure. We discuss all these predictions
in the context of current experimental measurements.

2. The effective dielectric tensor of the photoreceptor outer

segment

Both real and imaginary form birefringence has been
well-documented in a variety of periodic dielectric struc-
tures (Born & Wolf, 1999, and reference therein). Wiener
(1912) first showed that a stack of thin, non-absorbing,
isotropic dielectric plates would exhibit effective aniso-
tropic dielectric constants when the thicknesses of the
plates and the dimensions of the overall structure were
smaller and larger, respectively, than the wavelength of
light. Such birefringence is solely due to the nature of
the boundary conditions imposed on the electric and dis-
placement field vectors of the light by Maxwell’s equa-
tions. More complex structures, such as the anisotropic
and dichroic bilayer stack in an outer segment, exhibit
similar boundary conditions. However, typical deriva-
tions of the effective dielectric constants, such as derived
in Born and Wolf (1999) and those used by Israelachvili
et al. (1975) and Harosi (1981), are only valid for uniax-
ial systems, where the elements of a dielectric tensor
�ij = 0 for i 5 j. Bêche and Gaviot (2003) have recently
set out a general theory for calculating the effective
dielectric tensor of a multi-layer periodic stack for both
uniaxial and biaxial dielectric tensors.

Fig. 1A is a schematic diagram of a rod photoreceptor,
defining both the tensor quantities and the absorbancies to
be used in the following derivations. In the figure, the cel-
lular absorbancies that would be measured experimentally
are represented by aperp and apar perpendicular and parallel
to the plane of the bilayers. �cell represents the effective
dielectric tensor of the outer segment. In the expanded view
of the bilayers, a? and ak represent the local absorbance of
the individual bilayers perpendicular and parallel to the
plane of that bilayer. �1 and �2 represent the dielectric ten-
sors of the bilayer and cytoplasm, respectively. It is
assumed here that the local optical properties of the intra-
and interdiscal spaces are the same. Fig. 1B further depicts
the two length scales of the outer segment, the thicknesses
of the bilayer, t1 and the adjacent cytoplasm t2. These
thicknesses allow the volume fractions of the bilayers, f1,
and the cytoplasm, f2, to be expressed as
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f1 ¼
t1

t1 þ t2

; f 2 ¼
t2

t1 þ t2

. ð1Þ

For light incident on outer segments in a transverse orien-
tation, for both the bilayers and surrounding cytoplasm the
displacement field vectors, D, and the electric field vectors,
E, in the cell are linked to the dielectric tensor, �, by the
basic relationship

Dw
l ¼

XM

k¼1

�w
lkEw

k ðw ¼ 1 or 2Þ; ð2Þ

where k = 1 to M and M = 3 and k stands for the three
indices 1,2,3, representing an orthogonal x, y, z coordinate
system. l stands for each of the x, y, and z directions in
turn. Importantly both dielectric tensors show the symme-
try �ij = �ji.

Examining the case where light propagates along the
z-axis, defined in both Figs. 1A and B, and adapting
the workings of Bêche and Gaviot (2003) for N types
of layer, the continuous boundary conditions of the
tangential component of the electric field and the nor-
mal component of the displacement field across the
surface discontinuity result in the general matrix
expressions:

Ecell ¼
XN

n¼1

GnEn with Gn ¼
fn 0 0

0 1
N 0

0 0 1
N

0
B@

1
CAðn ¼ 1 to NÞ

ð3Þ
and

Dcell ¼
XN

n¼1

PnDn with Pn ¼

1
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0 fn 0

0 0 fn

0
B@

1
CA ¼ fn

N
ðGnÞ�1

ð4Þ
with

V1E1 ¼ � � � ¼ VnEn ¼ � � � ¼ VN EN

with Vn ¼
�n

11 �n
21 �n

31

0 1 0

0 0 1

0
B@

1
CAðn ¼ 1 to NÞ. ð5Þ

From these relations the general matrix expression for the
effective dielectric tensor of the periodic system, �eff,
becomes

�eff ¼
XN

n¼1

Pn�nðVnÞ�1
V1

" # XN

n¼1

GnðVnÞ�1
V1

" #�1

. ð6Þ

This expression divides into a general set of laws providing
a simple way to calculate each element, �eff

ij , of the effective
dielectric tensor for any layered structure (n = 2 to N):

�eff
11 ¼

QN
i¼1�

i
11PN

i¼1 fi
QN

j¼1 6¼i�
j
11

� �n o ; ð7Þ
�eff
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i
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j
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(for uv = 22, 23, 33).
Simplifying these expressions to the case of the outer

segment structure where N = 2, the effective dielectric ten-
sor of the cell, �cell becomes

�cell
11 ¼
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11�
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and where the bilayer and cytoplasm dielectric tensors
derived by Roberts and Gleeson (2004) are,

�1 ¼
AA BB DD

BB CC EE

DD EE FF

0
B@

1
CA ð11Þ

�2 ¼
�cytoplasm 0 0

0 �cytoplasm 0

0 0 �cytoplasm

0
B@

1
CA ð12Þ

with the elements AA . . . FF defined in Table 1. Clearly if
the dielectric tensor of the bilayer was uniaxial, as assumed
in previous theories (i.e., �ij = 0 when i 5 j), then the above
equations would reduce to the classical solutions of
�cell

11 ¼ ð�1
11�

2
11Þ=ðf1�

2
11 þ f2�

1
11Þ and �cell

22 ¼ f1�
1
22 þ f2�

2
22. It is

also perhaps worth noting at this point that by extending
the theory to account for the dielectric tensors of the sys-
tem, the discussions of Harosi (1978) and Snyder (1978)
are no longer applicable.

Following then methods set out by Roberts and Gleeson
(2004), the derivation of the effective dielectric tensor in
turn allows Maxwell’s equations to be solved using a



Table 1
Derived elements of the bilayer dielectric tensor from Roberts and Gleeson (2004)

Elements of the dielectric tensor

AA = A A = acos2c � 2bcoscsinc + c sin2c a = �1 + a sin2h
BB = Bcoss � D sins B = bcos2c � b sin2c + (a � c) sinccosc b = �a sinhcoshcosn
CC = Ccos2s � 2Ecosssins + Fsin2s C = a sin2c � 2bcoscsinc + ccos2c c = (�2 + acos2h)cos2n + �3 sin2n
DD = B sins + Dcoss D = dcosc � e sinc d = �a sinhcoshsinn
EE = Ecos2s � E sin2s + (C � F) sinscoss E = dsinc + ecosc e = (�2 � �3 + acos2h)cosnsinn
FF = Csin2s + 2Ecosssins + Fcos2s F = f f = (�2 + acos2h)sin2n + �3 cos2n

�11, �22, and �33 represent real parts of the x, y, z dielectric constants of the bilayer. a describes the complex part of the bilayer dielectric tensor with h
accounting for the angle between the main absorption dipole of the chromophore and the plane of the bilayer. c, n, and s are the rotational degrees of
freedom representing the bilayer tilt, the rotational diffusion in the bilayer Brown (1972), and outer segment as a whole.

3262 N.W. Roberts / Vision Research 46 (2006) 3259–3266
standard 4 · 4 matrix technique (Azzam & Bashara, 1987).
From the calculations of the transmitted intensity, the
spectral absorbance can be deduced for the transverse illu-
mination of the outer segments. Further, by comparing the
calculated effective dichroic ratio of the cell, Dcell, to the
dichroic ratios of the bilayers, Dbilayer, the dichroic factor,
N, due to the form birefringence can be found as

Dcell ¼ NDbilayer; ð13Þ
3. Calculations of spectral absorbance

The validity of all theoretical predictions depends
strongly on the accuracy of the parameters used in the cal-
culations. Liebman (1975) had previously measured the
refractive index of the cytoplasm to be 1.365 in outer seg-
ments of rods from Rana pipiens. At a similar time Lieb-
man, Jagger, Kaplan, and Bargoot (1974) measured the
average refractive index and birefringence of the bilayers
in the outer segment to be 1.475 and 0.005. However, these
values were revised slightly with subsequent measurements
(Kaplan, Deffebach, & Liebman, 1978) to values of
1.496 ± 0.018 and 1.488 ± 0.018 for Reð

ffiffiffiffiffiffi
�1

11

p
Þ and

Reð
ffiffiffiffiffiffi
�1

22

p
Þ, respectively. The higher values reported by Kap-

lan et al. (1978) fit with the knowledge that protein-con-
taining membranes generally exhibit higher refractive
indices (Salamon, Huang, Cramer, & Tollin, 1998) than
those that contain lipids alone. For example, Ramsden
(1999) showed that two model lipid bilayers had refractive
indices of 1.398 and 1.4039 for 1,2-dimyristoleoyl-sn-glyce-
ro-3-phosphatidylcholine (DMPC) and 1.415 and 1.419 for
1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC).
Coupled plasmon waveguide spectroscopy measurements
(Salamon et al. (1998)) showed that inclusions such as cyto-
chrome b6f in similar phosphatidylcholine (PC) model
bilayers raised the refractive indices to 1.548 ± 0.001 and
1.480 ± 0.001. Ellipsometry measurements have also
shown that inclusions of cholesterol raise PC model bilayer
refractive indices to around 1.471 and 1.490 (Jian, Akah-
ane, & Tako, 1981).

In assessing the dichroic factor N as a function of the
bilayer refractive indices in the following calculations, a
range of values were therefore chosen spanning the results
of Kaplan et al. (1978). A refractive index ratio, X, is used
to describe this range of values, and is defined as the ratio
between the real parts of the bilayer refractive index per-
pendicular to the plane of that bilayer, n1

?, and the cyto-
plasm, n2, refractive index. Therefore a refractive index
ratio of X = 1.09 represents the exact measurements of
Kaplan et al. (1978). As regards the dispersion in both
the real and imaginary parts of the dielectric tensor of
the bilayer, there is very little data in the literature. In
the calculations in this work the real parts of the refractive
indices were approximated to be independent of wave-
length whilst the complex dispersion in the bilayer refrac-
tive indices was estimated from the results of Chance,
Perry, Akerman, and Thorell (1959) and Harosi (1981).

The principal coordinate systems of the real and com-
plex parts of the dielectric tensor are also not coincident.
While the chromophore C5 � C18 axis lies at an angle of
21 ± 5� (Gröbner, Burnett, Choi, Mason, & Watts, 2000)
to the plane of the membrane, the main absorption dipole
is believed to make an angle of �16� (Jäger et al., 1997).
This information was used to calculate the local biaxial
complex dielectric tensor of the bilayer environment (see
Eq. (11)) (Roberts & Gleeson, 2004). A range of volume
fractions occupied by the bilayers were also used in the fol-
lowing calculations and were generally between 0 and 0.5.
This assumption was based on a range spanning the results
of Kaplan et al. (1978), who measured a variation in the
volume fraction along the axis of a Rana pipiens rod outer
segment to be 0.28 ± 0.11 to 0.22 ± 0.08. A point of note is
that the majority of MSP measurements are made with the
cells contained in a hyperosmotic medium. This has the
effect of changing the physiological volume fraction of
the cells during measurements.

Fig. 2 illustrates a comparison of spectral absorbance
calculated for both the individual bilayers (solid line) and
the outer segment (dashed line) following the theory set
out in this paper of a model rod outer segment. The volume
fraction and other parameters employed in the calculation
were used as described above and are detailed again in the
figure caption. Calculating the dichroic ratios from these
plots for both cases, shows the increase as expected in the
dichroic ratio due to the form birefringence. In this exam-
ple the dichroic ratio has increased by a factor of N � 1.3.
Roberts and Gleeson (2004) also showed that the dichroic
ratio was independent of wavelength. Similarly, the data in
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Fig. 2 confirms that the dichroic absorbance is independent
of wavelength for a general case. Therefore, N is also in
general independent of wavelength.

It is immediately apparent from Fig. 2 that the effective
optical density of the outer segment is considerably
reduced when accounting for the form birefringence, a
change not previously considered by other workers.
Fig. 3 shows that the effective optical density of the cell is
a strong function of the volume fraction occupied by the
bilayer. For a volume fraction of 0.25 and a refractive
index ratio of X = 1.09, the effective optical density of out-
er segment is only around 25% that of the bilayer. Experi-
mental measures of the optical density (along with
measures of the dichroic ratio) are commonly used in the
calculation of the visual pigment concentration. Harosi
(1982) recognized that in these calculations, the dichroic
ratio needed to be corrected for the effects of form birefrin-
gence. However, no mention has been made in the litera-
ture concerning a similar correction for optical density.
Indeed, as form birefringence alters the effective absor-
bance to change the dichroic ratios, then it seems logical
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Fig. 3. A graph showing the calculated changes in the perceived optical
densities of the outer segments as a function of the ratio, X, between the
real parts of the bilayer refractive index n1

? and the cytoplasm n2 and the
volume fractions (labeled) occupied by the bilayers. The optical density of
the bilayer is 0.0078 lm�1.
that the absolute values of the measured absorbance and
thus the optical density may also change. Clearly from
the trend displayed in Fig. 3, uncorrected values of the
optical density may lead to a possible underestimation in
any calculations of the visual pigment density.

4. Dependency on volume fraction, refractive index ratio, and

bilayer birefringence

The above calculations of the absorbance spectra make
it straightforward to investigate further the effects of differ-
ent optical and physical parameters on the dichroic ratios
and dichroic factor, N. Fig. 4A illustrates the change in
the dichroic factor as a function of both the refractive
index ratio and the volume fraction occupied by the bilay-
ers. The profile of the data in Fig. 4A is similar to that pub-
lished by Israelachvili et al. (1975), and redrawn in Fig. 4B.
However, Fig. 4A illustrates that some of the discrepancies
from previous theories have now been resolved. The theory
derived in this work produces the logically correct result of
the dichroism factor N being equal to zero when the volume
fraction of the bilayers is zero (f = 0) and the outer segment
is a uniaxial non-absorbing system.
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present in the outer segment (f = 0).
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Figs. 5 and 6 examine the effects of two further optical
parameters on the absorbance spectra. Fig. 5 shows that
changes in the intrinsic birefringence of the bilayers,
Reðn1

? � n1
kÞ have little effect on the dichroic factor N. Sim-

ilarly changes in the angle between the main transition
dipole and the plane of the bilayers, i.e., an effective change
in Imðn1

? � n1
kÞ also has little influence on the dichroic fac-

tor. Both sets of data indicate, therefore, that the dichroic
factor is only a function of the volume fraction occupied by
the bilayers and the refractive index difference across the
cytoplasm and bilayer interface.

5. Role in polarization sensitivity

To place this work in a wider context, it is worth consid-
ering the role that form birefringence may play within the
vision process, and in particular the effect it may have on
polarized light discrimination and sensitivity. It has been
categorically shown that several classes of vertebrate exhib-
it differing forms of polarization vision (Able & Able, 1995;
Freake, 1999; Hawryshyn & McFarland, 1987; Horváth &
Varjú, 2004; Phillips, Deutschlander, Freake, & Borland,
2001; Taylor & Adler, 1973), with the majority of the work
examining polarization sensitivity in a variety of species of
teleosts (Coughlin & Hawryshyn, 1995; Flamarique &
Browman, 2001; Flamarique & Hawryshyn, 1997, 1998;
Flamarique, Hawryshyn, & Harosi, 1998; Hawryshyn &
McFarland, 1987; Parkyn & Hawryshyn, 1993, 2000).
However, the underlying mechanisms that cause individual
photoreceptors to produce a differential response to differ-
ent polarizations of light still remain unclear. Several stud-
ies (Fineran & Nicol, 1978; Flamarique & Hawryshyn,
1998; Flamarique et al., 1998; Flamarique & Harosi,
2002) have linked transverse dichroic absorbance in certain
classes of cone photoreceptors to polarization sensitivity in
two families of teleosts.

Fineran and Nicol (1978) provided the first evidence of
the unique photoreceptor structure in the anchovy family.
Anchoa mitchilli and Anchoa hepsetus posses a cone photo-
receptor type of combined long and bilobed cones where
the planes of the bilayer membranes are oriented parallel
to the long axis of the outer segments. Flamarique and
Harosi (2002) measured the dichroic ratios of the long cone
to be about 1.5. A similar photoreceptor structure has also
been described in species of Engraulis mordax and Flamari-
que and Hawryshyn (1998) measured the polarization sen-
sitivity from compound action potential recordings in the
optic nerve. These measurements showed that the cones
did indeed mediate polarization information at the peak
wavelength of the spectral response curve. The polarization
sensitivity was measured to be 2.57 with the cones having a
maximum sensitivity to horizontally polarized light.

The second mechanism that relies on transverse absor-
bance for polarization sensitivity is a model proposed by
Flamarique et al. (1998) in species of salmonid. Several
electrophysiological studies have shown significant levels
of polarization sensitivity at UV wavelengths in both the
optic nerve (Parkyn & Hawryshyn, 1993, 2000) and torus
semicircularis (Coughlin & Hawryshyn, 1995) of different
species. For the UV cones in the retina to provide such
polarization discrimination, Flamarique et al. (1998) sug-
gested that grazing anisotropic reflections from double
cone inner segments transversely reflect onto the outer
segments of the UV cones.

For a polarization sensitivity mechanism relying on
transverse absorbance, any increase in the dichroic ratio
would result in a corresponding increase in the differential
output from the cell. In fact, it is relatively straightforward
to show this mathematically. In terms of the absorbance A,
the intensity of light absorbed IA, can be written as

IA ¼ I0ð1� 10�AÞ; ð14Þ
where I0 is the incident intensity. The level of polarization
sensitivity can be calculated by measuring a threshold level
response of the photoreceptor for the different polariza-
tions (Parkyn & Hawryshyn, 1993, 2000). This criterion
provides a way of measuring the different incident intensi-
ties of polarized light required to produce the same
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response or same amount of light absorbed. In these terms,
sensitivity, S is defined as (Parkyn & Hawryshyn, 2000)

S ¼ � logðI0Þ. ð15Þ
The polarization sensitivity, PS, can then be written as

PS ¼ 10Sk�S? ¼ I0?

I0k
ð16Þ

for sensitivity to light polarized parallel, Sk and perpendic-
ular, S? to the plane of the bilayer. The polarization sensi-
tivity can therefore be equated with the absorbance as

PS ¼ ðIA=I0kÞ
ðIA=I0?Þ

¼ 1� 10�Ak

1� 10�A?
; ð17Þ

which for values of absorbance �1 can be approximated
by the simple relationship

PS � Ak
A?
¼ Dichroic ratio. ð18Þ

It is within this relationship that form birefringence plays
its role in the vision process. Fig. 4 illustrated that form
birefringence increases the transverse dichroic ratio of the
outer segments. Therefore, by Eq. (18), increasing the le-
vel of form birefringence will increase the polarization
sensitivity of an individual photoreceptor for a trans-
versely absorbing mechanism. However, decreasing the
volume fraction of the bilayers within the outer segment
to increase the dichroic ratio would have the adverse ef-
fect of decreasing the optical density. Consequently, in a
system that is designed for polarization discrimination
using this mechanism, a balance must exist between effi-
ciency of photon detection and the level of polarization
contrast.

As an interesting extra point, it is worth noting that the
dichroic ratios of individual cones have also been com-
pared to levels of polarization sensitivity at later stages of
neural processing with compound action potential record-
ings made in the optic nerve in the same species. For exam-
ple, dichroic ratio measurements in goldfish (Carassius

auratus) cone photoreceptors have been made by Harosi
and MacNichol (1974). Across the long, mid, and short
wavelength cone types, the dichroic ratios were found to
be in the range of 2–3. In comparison, Hawryshyn and
McFarland (1987) measured polarization sensitivity of
the UV, mid, and long wavelength cone mechanisms to
be 4.68 from compound action potential recordings in the
optic nerve. These values are approximately double the
dichroic ratio values. This gain in the sensitivity to polar-
ized light has been highlighted as evidence for the role of
synaptic inhibition to improve the efficiency of discrimina-
tion. Undoubtedly, in mechanisms of transverse polarized
light detection, form birefringence and these neural levels
polarization sensitivity are related through several stages
of complex processing. However, important studies are still
needed to understand this relationship.

Furthermore, to the author’s knowledge there have
been no conclusive experimental measurements of form
birefringence. Although, in a comment made by Snyder
(1978), he indicated that Liebman and Bargoot had found
the dichroic factor to be at least 1.2. Even with new exper-
imental techniques and technology, definitive information
on the how the structure of the outer segments influences
the absorbance of polarized light remains an exciting
challenge.

6. Conclusions

In summary, a new theoretical model has been derived
enabling a precise calculation of the absorbance spectra
of transversely illuminated photoreceptor outer segments.
The occurrence of form birefringence in the periodic bilay-
er/cytoplasm lamellar structure significantly affects the way
polarized light is absorbed transversely, particularly in
changing the values of the cellular dichroic ratios. The
increase with respect to the dichroic ratio value when the
form birefringence is not considered is seen to be � 1.3
for physiologically realistic parameters. Importantly, the
results derived from this work have exhibited none of the
inconsistencies evident in previously published theories.
Furthermore, these calculations suggest that experimental
measurements of optical density may need to take into
account form birefringence in order to provide accurate
results.
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