ANOTHER new paper from the lab!

Optics of cone photoreceptors in the chicken (Gallus gallus domesticus)

 

Wilby D., Toomey M.B., Olsson P., Frederiksen R., Cornwall M.C., Oulton R., Kelber A., Corbo J.C. & Roberts N. W. 

Journal of the Royal Society Interface 12 20150591. doi: 10.1098/rsif.2015.0591

Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones.

 

NEW paper from the lab!

Polarization sensitivity as a visual contrast enhancer in the Emperor dragonfly larva, Anax imperator (Leach, 1815).

 

Sharkey, C. R., Partridge, J. C., Roberts N. W. 

Journal of Experimental Biology. Advanced online publication. doi: 10.1242/eb.122507

Polarization sensitivity (PS) is a common feature of invertebrate visual systems. In insects, PS is well known for its use in several different visually guided behaviours, particularly navigation and habitat search. Adult dragonflies use the polarization of light to find water but a role for PS in aquatic dragonfly larvae, a stage that inhabits a very different photic environment to the adults, has not been investigated. The optomotor response of the larvae of the Emperor dragonfly, Anax imperator, was used to determine whether these larvae use PS to enhance visual contrast underwater. Two different light scattering conditions were used to surround the larval animals: a naturalistic horizontally polarized light field and non naturalistic weakly polarized light field. In both cases these scattering light fields obscured moving intensity stimuli that provoke an optokinetic response in the larvae. Animals were shown to track the movement of a square-wave grating more closely when it was viewed through the horizontally polarized light field, equivalent to a similar increase in tracking ability observed in response to an 8% increase in the intensity contrast of the stimuli. Our results suggest that larval PS enhances the intensity contrast of a visual scene under partially polarized lighting conditions that occur naturally in freshwater environments. 

NEW PAPER out from the lab

Perceiving polarization with the naked eye: characterization of human polarization sensitivity

Shelby E. TempleJuliette E. McGregorCamilla MilesLaura GrahamJosie MillerJordan BuckNicholas E. Scott-SamuelNicholas W. Roberts

Published 1 July 2015.DOI: 10.1098/rspb.2015.0338  click here for a link to the paper

Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration.